4 research outputs found

    Use and Improvement of Remote Sensing and Geospatial Technologies in Support of Crop Area and Yield Estimations in the West African Sahel

    Get PDF
    In arid and semi-arid West Africa, agricultural production and regional food security depend largely on small-scale subsistence farming and rainfed crops, both of which are vulnerable to climate variability and drought. Efforts made to improve crop monitoring and our ability to estimate crop production (areas planted and yield estimations by crop type) in the major agricultural zones of the region are critical paths for minimizing climate risks and to support food security planning. The main objective of this dissertation research was to contribute to these efforts using remote sensing technologies. In this regard, the first analysis documented the low reliability of existing land cover products for cropland area estimation (Chapter 2). Then two satellite remote sensing-based datasets were developed that 1) accurately map cropland areas in the five countries of Sahelian West Africa (Senegal, Mauritania, Mali, Burkina Faso and Niger; Chapter 3), and 2) focus on the country of Mali to identify the location and prevalence of the major subsistence crops (millet, sorghum, maize and non-irrigated rice; Chapter 4). The regional cropland area product is distributed as the West African Sahel Cropland area at 30 m (WASC30). The development of the new dataset involved high density training data (380,000 samples) developed by USGS in collaboration with CILSS for training about 200 locally optimized random forest (RF) classifiers using Landsat 8 surface reflectances and vegetation indices and the Google Earth Engine platform. WASC30 greatly improves earlier estimates through inclusion of cropland information for both rainfed and irrigated areas mapped with a class-specific accuracy of 79% across the West Africa Sahel. Used as a mask in crop monitoring systems, the new cropland area data could bring critical insights by reducing uncertainties in xv identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security. Keywords: Agricultural identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security

    Assessing Cropland Area in West Africa for Agricultural Yield Analysis

    No full text
    Accurate estimates of cultivated area and crop yield are critical to our understanding of agricultural production and food security, particularly for semi-arid regions like the Sahel of West Africa, where crop production is mainly rain-fed and food security is closely correlated with the inter-annual variations in rainfall. Several global and regional land cover products, based on satellite remotely-sensed data, provide estimates of the agricultural land use intensity, but the initial comparisons indicate considerable differences among them, relating to differences in the satellite data quality, classification approaches, and spatial and temporal resolutions. Here, we quantify the accuracy of available cropland products across Sahelian West Africa using an independent, high-resolution, visually interpreted sample dataset that classifies all points across West Africa using a 2-km sample grid (~500,000 points for the study area). We estimate the “quantity” and “allocation” disagreements for the cropland class of eight land cover products in five Western Sahel countries (Burkina Faso, Mali, Mauritania, Niger, and Senegal). The results confirm that coarse spatial resolution (300 m, 500 m, and 1000 m) land cover products have higher disagreements in mapping the fragmented agricultural landscape of the Western Sahel. Earlier products (e.g., GLC2000) are less accurate than recent products (e.g., ESA CCI 2013, MODIS 2013 and GlobCover 2009). We also show that two of the finer spatial resolution maps (GFSAD30, and GlobeLand30) using advanced classification approaches (random forest, decision trees, and pixel-object combined) are currently the best available products for cropland identification. However, none of the eight land cover databases examined is consistent in reaching the targeted 75% accuracy threshold in the five Sahelian countries. The majority of currently available land cover products overestimate cultivated areas by an average of 170% relative to the cropland area in the reference data

    A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning

    No full text
    The West African Sahel Cropland map (WASC30) is a new 30-m cropland extent product for the nominal year of 2015. We used the computing resources provided by Google Earth Engine (GEE) to fit and apply Random Forest models for cropland detection in each of 189 grid cells (composed of 100 km2, hence a total of ~1.9 × 106 km2) across five countries of the West African Sahel (Burkina Faso, Mauritania, Mali, Niger, and Senegal). Landsat-8 surface reflectance (Bands 2–7) and vegetation indices (NDVI, EVI, SAVI, and MSAVI), organized to include dry-season and growing-season band reflectances and vegetation indices for the years 2013–2015, were used as predictors. Training data were derived from an independent, high-resolution, visually interpreted sample dataset that classifies sample points across West Africa using a 2-km grid (~380,000 points were used in this study, with 50% used for model training and 50% used for model validation). Analysis of the new cropland dataset indicates a summed cropland area of ~316 × 103 km2 across the 5 countries, primarily in rainfed cropland (309 × 103 km2), with irrigated cropland area (7 × 103 km2) representing 2% of the total cropland area. At regional scale, the cropland dataset has an overall accuracy of 90.1% and a cropland class (rainfed and irrigated) user’s accuracy of 79%. At bioclimatic zones scale, results show that land proportion occupied by rainfed agriculture increases with annual precipitation up to 1000 mm. The Sudanian zone (600–1200 mm) has the highest proportion of land in agriculture (24%), followed by the Sahelian (200–600 mm) and the Guinean (1200 +) zones for 15% and 4%, respectively. The new West African Sahel dataset is made freely available for applications requiring improved cropland area information for agricultural monitoring and food security applications

    Selection of Potential Sites for Promoting Small-Scale Irrigation across Mali Using Remote Sensing and GIS

    No full text
    Agricultural development across much of sub-Saharan Africa is constrained by the gap in knowledge on site suitability for sustainably expanding irrigable lands to new areas. This study aimed to identify the most suitable sites for promoting small-scale irrigation in Mali based on environmental and land use/land cover criteria. Six thematic layers were integrated to consider the water accessibility (distance from surface water and groundwater potential), soil, climate conditions, slope, and land use/land cover. Subjective scores and weights were assigned to each of the six layers, which were integrated to select the most suitable sites according to five categories ranging from ‘very high’ to ‘very low’. Results indicated that 641,448 ha of land have a very high potential for small-scale irrigation expansion: these are mostly located in the central Segou region (53% of the total very high potential sites across the country) and around the capital district, Bamako, in southern Koulikoro (38% of the total very high potential sites across the country). Sites ranked second as having high potential are also distributed in southern Segou, central Koulikoro, and the western Kayes and Mopti regions, totaling 20.8 Mha. Moderate potential sites are generally located in the northwestern and southern parts accounting for 37.8 Mha of the country, whereas low and very low potential sites are concentrated in the northern and eastern parts of the country over a total area of 65 Mha. The present study demonstrates the usefulness of remote sensing and GIS techniques in agricultural development planning at large-scale; similar methodologies can be applied in other sub-Saharan African countries
    corecore